Localization of Injective Modules Over Arithmetical Rings
نویسندگان
چکیده
منابع مشابه
Localization of injective modules over arithmetical rings
It is proved that localizations of injective R-modules of finite Goldie dimension are injective if R is an arithmetical ring satisfying the following condition: for every maximal ideal P , RP is either coherent or not semicoherent. If, in addition, each finitely generated R-module has finite Goldie dimension, then localizations of finitely injective R-modules are finitely injective too. Moreove...
متن کاملLocalization of Injective Modules over Valuation Rings
It is proved that EJ is injective if E is an injective module over a valuation ring R, for each prime ideal J 6= Z. Moreover, if E or Z is flat, then EZ is injective too. It follows that localizations of injective modules over h-local Prüfer domains are injective too. If S is a multiplicative subset of a noetherian ring R, it is well known that SE is injective for each injective R-module E. The...
متن کاملInjective Modules and Fp-injective Modules over Valuation Rings
It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....
متن کاملWeak dimension of FP-injective modules over chain rings
It is proven that the weak dimension of each FP-injective module over a chain ring which is either Archimedean or not semicoherent is less or equal to 2. This implies that the projective dimension of any countably generated FP-injective module over an Archimedean chain ring is less or equal to 3. By [7, Theorem 1], for any module G over a commutative arithmetical ring R the weak dimension of G ...
متن کاملPure-injective hulls of modules over valuation rings
If R̂ is the pure-injective hull of a valuation ring R, it is proved that R̂ ⊗R M is the pure-injective hull of M , for every finitely generated Rmodule M . Moreover R̂ ⊗R M ∼= ⊕1≤k≤nR̂/AkR̂, where (Ak)1≤k≤n is the annihilator sequence of M . The pure-injective hulls of uniserial or polyserial modules are also investigated. Any two pure-composition series of a countably generated polyserial module a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2009
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927870802502860